ஃபெர்மா எண்
ஃபெர்மா எண்
-
, n = 0,1,2,3, ...
பொருளடக்கம் |
ஐந்து ஃபெர்மா பகாதனிகள்
இங்கு n ஒர் எதிர்மமில்லாத முழு எண்.
- F0 = 21 + 1 = 3
- F1 = 22 + 1 = 5
- F2 = 24 + 1 = 17
- F3 = 28 + 1 = 257
- F4 = 216 + 1 = 65537
தீர்வு காணப்படாத பிரச்சினை
இவ்வெண்களை ஃபெர்மா முதலில் அறிமுகப்படுத்தும்போது, எல்லா n க்கும், Fn கள் பகா எண்களாக இருக்கவேண்டும் என்று யூகித்தார். ஆனால் F5 பகா எண்ணல்ல என்று ஆய்லர் காட்டினவுடன் நிலைமை மாறுபட்டது. 1796 இல் காஸினுடைய யூகமோ, ஃபெர்மா பகாதனிகள் F0,F1,F2,F3,F4 ஆகிய ஐந்து மட்டுமே என்பது. இந்த யூகம் இன்னும் (2007 வரையில்) நிரூபிக்கப்படவில்லை.வடிவியல் வரைமுறைகள்
கிரேக்கர்கள் காலத்திலிருந்து மட்டக்கோல், கவராயம் இவைகளை மாத்திரம் வைத்துக்கொண்டு ஒழுங்குப் பலகோணம் வரைவதெப்படி என்று ஆய்வுகள் இருந்தவண்ணமே உள்ளன. 3,4,5,6, 8, 10, 15 பக்கங்களுள்ள ஒழுங்குப் பலகோணத்தின் வரைமுறை அவர்களுக்குத் தெரிந்திருந்தது. ஆனால் 7,9,11,13 .... முதலிய பக்கங்களுடைய ஒழுங்குப் பலகோணத்தின் வரைமுறையைக் கண்டுபிடிக்க முயன்று தோற்றுப் போனவர்கள் பலர். கார்ல் ஃப்ரெடெரிக் காஸ் தான் ஒற்றைப்படை எண்ணிக்கை n உள்ள பக்கங்களைக் கொண்ட ஒழுங்குப் பலகோணம் மட்டக்கோல், கவராயம் இரண்டைக் கொண்டு வரையப்படவேண்டுமென்றால், n ஒரு ஃபெர்மா பகா எண்ணாகவோ அல்லது அவைகளின் பெருக்குத்தொகையாகவோ இருந்தாக வேண்டும் என்று கண்டுபிடித்தார். 18வது வயதில் இதைக் கண்டுபிடித்தவுடனேதான் தன் கணிதக் கண்டுபிடிப்புகளுக்காக நாட்குறிப்பு எழுதத் தொடங்கினார். அவர் காலமாகி 43 ஆண்டுகள் கழித்தே அவருடைய நாட்குறிப்பு உலகத்தாரின் முன்னிலையில் வைக்கப்பட்டது. காஸினுடைய கண்டுபிடிப்பின்படி, கிரேக்கர்களுக்குத் தெரிந்த 3, 5, 15 ஐத்தவிர 17, 257, 65537 பக்கங்களுக்கும் அல்லது இவைகளின் பெருக்குத்தொகையை எண்ணிக்கையாகக் கொண்ட பக்கங்களுக்கும் ஒழுங்குப் பலகோணம் மட்டக்கோல், கவராயம் இவைகளை மட்டும் கொண்டு வரையமுடியும்.ஆனால் 7, 9, 11, 13, ... ஆகிய எண்ணிக்கை கொண்ட பக்கங்களுடன் ஒழுங்குப் பலகோணம் மட்டக்கோல் கவராயம் இவைகளை மட்டும் கொண்டு வரைய முடியாது என்பதும் நிரூபணம் ஆகியது.